74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

1. General description

The 74 HC 4053 ; 74 HCT 4053 is a high-speed Si-gate CMOS device and is pin compatible with the HEF4053B. It is specified in compliance with JEDEC standard no. 7A.

The 74HC4053; 74HCT4053 is triple 2-channel analog multiplexer/demultiplexer with a common enable input ($\overline{\mathrm{E}}$). Each multiplexer/demultiplexer has two independent inputs/outputs ($\mathrm{n} Y 0$ and nY 1), a common input/output (nZ) and three digital select inputs (Sn).

With \bar{E} LOW, one of the two switches is selected (low-impedance ON-state) by S1 to S3. With \bar{E} HIGH, all switches are in the high-impedance OFF-state, independent of S1 to S3.
$V_{C C}$ and GND are the supply voltage pins for the digital control inputs (S1 to S3 and $\overline{\mathrm{E}}$). The V_{CC} to GND ranges are 2.0 V to 10.0 V for 74 HC 4053 and 4.5 V to 5.5 V for 74 HCT 4053 . The analog inputs/outputs ($\mathrm{nY0}$ and nY 1 , and $n Z$) can swing between V_{Cc} as a positive limit and V_{EE} as a negative limit. $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ may not exceed 10.0 V .

For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

2. Features

- Low ON resistance:
- 80Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=4.5 \mathrm{~V}$
- 70Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=6.0 \mathrm{~V}$
- 60Ω (typical) at $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}=9.0 \mathrm{~V}$
- Logic level translation:
- To enable 5 V logic to communicate with $\pm 5 \mathrm{~V}$ analog signals
- Typical 'break before make' built in
- Complies with JEDEC standard no. 7A
- ESD protection:
- HBM EIA/JESD22-A114-C exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Applications

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

4. Quick reference data

Table 1: Quick reference data
$V_{E E}=G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f}=6 \mathrm{~ns}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
74HC4053						
$\begin{aligned} & \mathrm{t}_{\text {tPH }}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	turn-ON time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				
	\bar{E} to $V_{\text {os }}$		-	17	-	ns
	Sn to $\mathrm{V}_{\text {os }}$		-	21	-	ns
$\begin{aligned} & \text { tpHZ, } \\ & \text { tpLZ } \end{aligned}$	turn-OFF time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$				
	\bar{E} to $V_{\text {os }}$		-	18	-	ns
	Sn to $\mathrm{V}_{\text {os }}$		-	17	-	ns
Ci_{i}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}	[1] -	36	-	pF

74HCT4053

$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}}, \\ & \mathrm{t}_{\mathrm{PZLL}} \end{aligned}$	turn-ON time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$					
	\bar{E} to $V_{\text {os }}$			-	23	-	ns
	Sn to $V_{\text {os }}$			-	21	-	ns
$\begin{aligned} & \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \\ & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \end{aligned}$					
	\bar{E} to $V_{\text {os }}$			-	20	-	ns
	Sn to $\mathrm{V}_{\text {os }}$			-	19	-	ns
C_{i}	input capacitance			-	3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance						
	independent I/O (nYn)			-	5	-	pF
	common I/O(nZ)			-	8	-	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to ($\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$)	[1]	-	36	-	pF

[1] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{0}=$ output frequency in MHz;
$\Sigma\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

5. Ordering information

Table 2: Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74HC4053				
74HC4053N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-4
74HC4053D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC4053DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HC4053PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HC4053BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1
74HCT4053				
74HCT4053N	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DIP16	plastic dual in-line package; 16 leads (300 mil); long body	SOT38-4
74HCT4053D	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT4053DB	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HCT4053PW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HCT4053BQ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5 \times 3.5 \times 0.85 \mathrm{~mm}$	SOT763-1

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
2 Y1	1	2 independent input/output 1
2 Y0	2	2 independent input/output 0
$3 Y 1$	3	3 independent input/output 1
$3 Z$	4	3 common input/output
$3 Y 0$	5	3 independent input/output 0
\bar{E}	6	enable input (active LOW)
V $_{\text {EE }}$	7	negative supply voltage
GND	8	ground (0 V)
S3	9	select input 3
S2	10	select input 2
S1	11	select input 1
$1 Y 0$	12	1 independent input/output 0
$1 Y 1$	13	1 independent input/output 1
$1 Z$	14	1 common input/output
$2 Z$	15	2 common input/output
V	16	supply voltage

8. Functional description

8.1 Function table

Table 4: Function table [1]

Control	Channel on	
E	Sn	
L	L	$\mathrm{nY0}$ to nZ
	H	$\mathrm{nY1}$ to nZ
H	X	none

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
L = LOW voltage level;
$X=$ don't care.

9. Limiting values

Table 5: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{E E}=G N D$ (ground $=0$ V). $\underline{[1]}$

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+11.0	V
I_{IK}	input clamping current	$\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA
I_{SK}	switch clamping current	$\mathrm{V}_{\mathrm{S}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{S}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 20	mA

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 5: Limiting values ...continued
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{E E}=G N D($ ground $=0$ V). $\underline{[1]}$

Symbol	Parameter	Conditions	Min	Max	Unit
Is	switch current	$-0.5 \mathrm{~V}<\mathrm{V}_{\mathrm{S}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$		± 25	mA
$\mathrm{I}_{\text {EE }}$	negative supply current			-20	mA
$I_{\text {cc }}$	quiescent supply current		-	50	mA
$\mathrm{I}_{\text {GND }}$	ground current		-	-50	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			
	DIP16 package		[2]	750	mW
	SO16 package		[3]	500	mW
	SSOP16 package		[4] -	500	mW
	TSSOP16 package		[4]	500	mW
	DHVQFN16 package		[5]	500	mW
P_{S}	power dissipation per switch		-	100	mW

[1] To avoid drawing V_{cc} current out of terminals nZ , when switch current flows in terminals nYn , the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminals $n Z$, no $V_{C C}$ current will flow out of terminals $n Y n$. In this case there is no limit for the voltage drop across the switch, but the voltages at $n Y n$ and $n Z$ may not exceed $V_{C C}$ or $V_{E E}$.
[2] For DIP16 package: $P_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[3] For SO16 package: $P_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$ above $70^{\circ} \mathrm{C}$.
[4] For SSOP16 and TSSOP16 packages: $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.
[5] For DHVQFN16 packages: $\mathrm{P}_{\text {tot }}$ derates linearly with $4.5 \mathrm{~mW} / \mathrm{K}$ above $60^{\circ} \mathrm{C}$.

10. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
74HC4053						
$\Delta \mathrm{V}_{\text {CC }}$	supply voltage difference	see Figure 7				
	$V_{C C}$ - GND		2.0	5.0	10.0	V
	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {EE }}$		2.0	5.0	10.0	V
V	input voltage		GND	-	V_{CC}	V
V_{S}	switch voltage		$V_{\text {EE }}$	-	$V_{\text {cc }}$	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{tr}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	6.0	1000	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.0	500	ns
		$\mathrm{V}_{C C}=6.0 \mathrm{~V}$	-	6.0	400	ns
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	6.0	250	ns
74HCT4053						
$\Delta \mathrm{V}_{\mathrm{CC}}$	supply voltage difference	see Figure 7				
	$V_{C C}-G N D$		4.5	5.0	5.5	V
	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}$		2.0	5.0	10.0	V

Triple 2-channel analog multiplexer/demultiplexer

Table 6: Recommended operating conditions ...continued

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
V_{l}	input voltage		GND	-	V_{CC}	V
V_{S}	switch voltage		V_{EE}	-	V_{CC}	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature		-40	+25	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.0	500	ns

Fig 7. Guaranteed operating area as a function of the supply voltages

11. Static characteristics

Table 7: Ron resistance per switch 74HC4053 and 74HCT4053
For test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
74 HC 4053 supply voltages: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
$74 H C T 4053$ supply voltages: $V_{C C}-G N D=4.5 \mathrm{~V}$ or 5.5 V ; $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$\mathrm{R}_{\text {ON(} \text { (peak) }}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	100	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	70	130	Ω

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 7: Ron resistance per switch 74HC4053 and 74HCT4053 ...continued
For test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
$74 \mathrm{HC4053}$ supply voltages: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
74 HCT 4053 supply voltages: $V_{C C}-G N D=4.5 \mathrm{~V}$ or $5.5 \mathrm{~V} ; V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\mathrm{ON}(\text { (rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {EE }} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	70	120	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	60	105	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {CC }} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	150	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	90	160	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	80	140	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	65	120	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON resistance mismatch between channels	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	9	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	8	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	6	-	Ω
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	225	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	165	Ω
$\mathrm{R}_{\text {ON(rail) }}$	ON resistance (rail)	$\mathrm{V}_{\mathrm{is}}=\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	150	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	130	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	200	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	175	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	150	Ω

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$					
$\mathrm{R}_{\text {ON(peak) }} \mathrm{ON}$ resistance (peak)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}}$ to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	270	Ω
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	240	Ω
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	195	Ω

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 7: $\quad R_{\text {ON }}$ resistance per switch 74HC4053 and 74HCT4053 ...continued
For test circuit see Figure 8.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.
$74 \mathrm{HC4053}$ supply voltages: $V_{C C}-G N D$ or $V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .
74 HCT 4053 supply voltages: $V_{C C}-G N D=4.5 \mathrm{~V}$ or $5.5 \mathrm{~V} ; V_{C C}-V_{E E}=2.0 \mathrm{~V}, 4.5 \mathrm{~V}, 6.0 \mathrm{~V}$ and 9.0 V .

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{R}_{\mathrm{ON}(\text { rail) }}$	ON resistance (rail)	$\mathrm{V}_{\text {is }}=\mathrm{V}_{\text {EE }} ; \mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	180	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	160	Ω
		$\mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or V_{IL}				
		$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=100 \mu \mathrm{~A}$	[1] -	-	-	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	240	Ω
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	210	Ω
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{S}}=1000 \mu \mathrm{~A}$	-	-	180	Ω

[1] At supply voltages $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$ approaching 2.0 V the analog switch ON resistance becomes extremely non-linear. Therefore, it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.

Fig 8. Test circuit for measuring R_{ON}

$$
V_{\text {is }}=0 V \text { to }\left(V_{C C}-V_{E E}\right)
$$

(1) $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$
(2) $\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}$
(3) $V_{C C}=9 \mathrm{~V}$

Fig 9. Typical R_{ON} as a function of input voltage $\mathrm{V}_{\text {is }}$

Table 8: Static characteristics 74 HC 4053 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a nYn or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{\text {OS }}=V_{C C} \text { or } V_{E E} ; \\ & V_{I}=V_{C C} \text { or } G N D ; V_{E E}=0 V \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=10.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=2.0 \mathrm{~V}$	1.5	-	-	V
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	3.15	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	4.2	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=9.0 \mathrm{~V}$	6.3	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	-	-	0.5	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-	1.35	V
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	1.8	V
		$\mathrm{V}_{C C}=9.0 \mathrm{~V}$	-	-	2.7	V
I_{LI}	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	± 1.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	± 2.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \mid \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & V_{\text {is }}=V_{E E} \text { or } V_{C C} ; V_{O S}=V_{C C} \text { or } V_{E E} ; \\ & V_{I}=V_{C C} \text { or } G N D ; V_{E E}=0 V \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$

Table 9: Static characteristics 74HCT4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\mathrm{amb}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$						
V_{IH}	H HGH-state input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	2.0	1.6	-	$\mu \mathrm{A}$
V_{IL}	LOW-state input voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.2	0.8	$\mu \mathrm{~A}$

Table 9: Static characteristics 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {LI }}$	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 0.1	$\mu \mathrm{A}$
		all channels	-	-	± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 0.1	$\mu \mathrm{A}$
$I_{\text {cc }}$	quiescent supply current	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	8.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	16.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $G N D$	-	50	180	$\mu \mathrm{A}$
C_{i}	input capacitance		-	3.5	-	pF
$\mathrm{C}_{\text {S }}$	switch capacitance					
	independent I/O (nYn)		-	5	-	pF
	common I/O (nZ)		-	8	-	pF
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	$\mu \mathrm{A}$
V_{IL}	LOW-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	$\mu \mathrm{A}$
l_{LI}	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 10} \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(ON })}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 11 \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
ICC	quiescent supply current	$\begin{aligned} & V_{1}=V_{C C} \text { or } G N D ; V_{\text {is }}=V_{E E} \text { or } V_{C C} ; \\ & V_{\text {OS }}=V_{C C} \text { or } V_{E E} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	80.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or $G N D$	-	-	225	$\mu \mathrm{A}$
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$						
V_{IH}	HIGH-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	2.0	-	-	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IL }}$	LOW-state input voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V	-	-	0.8	$\mu \mathrm{A}$
l LI	input leakage current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-	-	± 1.0	$\mu \mathrm{A}$

Table 9: Static characteristics 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$).
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \left\|\mathrm{V}_{\mathrm{S}}\right\|=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see Figure } 10 \end{aligned}$				
		per channel	-	-	± 1.0	$\mu \mathrm{A}$
		all channels	-	-	± 1.0	$\mu \mathrm{A}$
$\mathrm{IS}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=10.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \\ & \mid \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} ; \text { see } \underline{\text { Figure } 11} \end{aligned}$	-	-	± 1.0	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & V_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{V}_{\text {is }}=\mathrm{V}_{\mathrm{EE}} \text { or } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{V}_{\mathrm{EE}} \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	160.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$	-	-	320.0	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional quiescent supply current	per input pin; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$; other inputs at V_{CC} or GND	-	-	245	$\mu \mathrm{A}$

Fig 10. Test circuit for measuring OFF-state leakage current

Fig 11. Test circuit for measuring ON -state leakage current

12. Dynamic characteristics

Table 10: Dynamic characteristics type 74HC4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{i s}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$					
$t_{\text {PHL }}$, propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see $\underline{\text { Figure } 12}$				
tple	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	15	60	ns
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	4	10	ns
	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	4	8	ns

Table 10: Dynamic characteristics type 74HC4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\bar{E} \text { to } V_{o s}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	44	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	315	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	63	ns
		$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	54	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	44	ns

[1] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{0}=$ output frequency in MHz ;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

Table 11: Dynamic characteristics type 74HCT4053
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or nZ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
$t_{\text {PHL }}$, tpLh	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 12				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	5	12	ns
		$\mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	4	8	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{tPZH}}, \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	turn-ON time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	27	48	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	34	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	23	-	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	25	48	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	16	34	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	21	-	ns

74HC4053; 74HCT4053

Triple 2-channel analog multiplexer/demultiplexer

Table 11: Dynamic characteristics type 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns}$; $C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{\text {is }}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=0 \mathrm{~V}$	-	24	44	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	20	-	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	22	44	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	15	31	ns
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	-	19	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	per switch; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to ($\left.\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}\right)$	[1] -	36	-	pF

$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
$t_{\text {PHL }}$, tple	propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=\infty \Omega$; see Figure 12				
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	15	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	10	ns
$\begin{aligned} & \text { tPZH, } \\ & \text { tPZL } \end{aligned}$	turn-ON time	$\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	60	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	43	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	60	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	43	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{P} H Z}, \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	turn-OFF time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see Figure 13				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	55	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	39	ns

$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$t_{\text {PHL }}, \quad$ propagation delay $\mathrm{V}_{\text {is }}$ to $\mathrm{V}_{\mathrm{os}} \quad \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$; $\mathrm{R}_{\mathrm{L}}=\infty \Omega$; see $\underline{\text { Figure } 12}$

Table 11: Dynamic characteristics type 74HCT4053 ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); $t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$ unless otherwise specified; for test circuit see Figure 14.
$V_{i s}$ is the input voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at a $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\begin{aligned} & \mathrm{t}_{\text {tPZ }}, \\ & \mathrm{t}_{\text {PLZ }} \end{aligned}$	turn-OFF time	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$; see $\underline{\text { Figure } 13}$				
	$\overline{\mathrm{E}}$ to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns
	Sn to $\mathrm{V}_{\text {os }}$	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	-	66	ns
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-	47	ns

[1] C_{PD} is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i}+\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\sum\left\{\left(C_{L}+C_{S}\right) \times V_{C C}{ }^{2} \times f_{0}\right\}=$ sum of outputs;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}}=$ maximum switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V .

13. Waveforms

Fig 12. Propagation delay input $\left(\mathrm{V}_{\text {is }}\right)$ to output (V_{os})

14. Additional dynamic characteristics

Table 14: Additional dynamic characteristics 74HC4053 and 74HCT4053
$G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$.
$V_{\text {is }}$ is the input voltage at an nYn or nZ terminal, whichever is assigned as an input.
$V_{\text {os }}$ is the output voltage at an $n Y n$ or $n Z$ terminal, whichever is assigned as an output.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{d}_{\text {sin }}$	sine wave distortion	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; see Figure 15				
		$\mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V} ; \mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.04	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.02	-	\%
		$\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$				
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V} ; \mathrm{V}_{\text {is }}=4.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.12	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V} ; \mathrm{V}_{\text {is }}=8.0 \mathrm{~V}(\mathrm{p}-\mathrm{p})$	-	0.06	-	\%
$\alpha_{\text {(OFF)(ft) }}$	OFF-state feed-through attenuation	$R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 16	[1]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	-50	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	-50	-	dB
$\mathrm{V}_{\mathrm{ct} \text { (sw-sw) }}$	crosstalk between switches	$R_{L}=600 \Omega ; C_{L}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz}$; see Figure 17	[1]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-2.25 \mathrm{~V}$	-	-60	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-4.5 \mathrm{~V}$	-	-60	-	dB
$\mathrm{V}_{\text {ct(d-sw) }}$	crosstalk between digital inputs and switch	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \text { see Figure } 18 \end{aligned}$	[2]			
		$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$	-	110	-	mV
		$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	220	-	mV
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see $\underline{\text { Figure } 19}$	[3]			
		$\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V} ; \mathrm{V}_{\text {EE }}=-2.25 \mathrm{~V}$	-	160	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	-	170	-	MHz

[1] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level ($0 \mathrm{dBm}=1 \mathrm{~mW}$ into 600Ω).
[2] Control input \bar{E} or Sn , with square-wave between V_{CC} and $G N D$.
[3] Adjust input voltage $\mathrm{V}_{\text {is }}$ to 0 dBm level at $\mathrm{V}_{\text {os }}$ for $1 \mathrm{MHz}(0 \mathrm{dBm}=1 \mathrm{~mW}$ into $50 \Omega)$.

Fig 15. Test circuit for measuring sine wave distortion

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{array}{r} 1.45 \\ 1.25 \\ \hline \end{array}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{array}{r} 0.25 \\ 0.19 \\ \hline \end{array}$	$\begin{gathered} 10.0 \\ 9.8 \\ \hline \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN	

Fig 21. Package outline SOT109-1 (SO16)

[^0]
[^0]: 74HC_HCT4053_4

